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ABSTRACT

This report describes our submission for the IEEE ICME
2024 grand challenge: semi-supervised acoustic scene
classification under domain shift. Our system is based on a
semi-supervised model with a pre-trained convolutional
neural network. We limit the effective receptive field of the
convolutional layers of the model for improving the
performance of the model. The TAU UAS 2020 Mobile
development dataset is adopted to train the model with data
augmentations. Experimental results show that our system
obtains a macro-average accuracy of 0.973 on the official
CAS 2023 development dataset.

Index terms— Acoustic scene classification, domain shift,
semi-supervised learning, mix-style

1. INTRODUCTION

Acoustic scene classification (ASC) is a task to classify
each input audio recording into one class of pre-given
acoustic scenes. ASC systems have the potential to benefit
numerous applications, including wearable devices, robotics,
and smart home devices. In recent years, the challenge on
Detection and Classification of Acoustic Scenes and Events
(DCASE) has received significant attention. ASC, as a core
task of the DCASE challenge, has attracted considerable
interest and undergone extensive research [1]-[4]. Notably,
deep learning algorithms have emerged as the predominant
approach for enhancing the ASC performance. However,
ASC methods based on deep learning typically require
substantial training data to achieve satisfactory performance,
which raises two crucial considerations in the development
of deep learning approaches for ASC: domain shift and
scarcity of labeled data.
The issue of domain shift is common in ASC systems

based on deep learning. Previous work has studied the
mismatch between devices and cities in ASC [5],
[6]. However, the concentration of recording cities in
Europe leads to a dataset where people tend to share more
similar living environments compared to other continents,
such as Asia and Africa. When directly evaluating the
performance of an ASC model trained on the recordings

from TAU UAS 2020 Mobile Development Dataset on the
recordings collected in Chinese cities, a significant drop in
accuracy is observed. This underscores the challenge of
applying existing datasets to environments with broader
differences in culture, language, and infrastructure.
Deep learning methods require abundant data for training,

and collecting a large-scale dataset is time consuming and
labor-intensive. Semi-supervised learning, as an effective
machine learning approach, can leverage both labeled and
unlabeled data, reducing the dependence on labeled data [7].

2. THE METHOD

To address the above two issues of domain shift and
scarcity of labeled data, we first pre-train an ASC model
using the TAU UAS 2020 Mobile Development Dataset
after performing a series of operations of data augmentation.
Then, we fine-tune the pre-trained ASC model using labeled
data from the development dataset of the IEEE ICME 2024
grand challenge. Next, we use the finetuned ASC model to
assign pseudo-labels to unlabeled data in the development
dataset. Finally, we fine-tune the CP-Res Damp [8] using
the pseudo-labeled data, and obtain the final ASC model for
evaluation. The following sections of this report will
introduce the details of the method, results and discussions.

Our experiments are built upon the ResNet architecture
explained in [9]. Initial experiments indicate that the optimal
receptive field (RF) size for the task is achieved with ρ = 4.
ρ is a coefficient that controls the maximum RF in the
model. The ResNet architecture is referred to as CP-Res
Damp [8]. Each convolutional neuron possesses a limited
receptive field within its layer input. To mitigate the
influence of neuron inputs that are farther away from the
center of the receptive field, we introduce a damped CNN.
In practical implementation, we achieve this damping effect
by element-wise multiplication of the weights of the
convolutional layer with a non-trainable constant matrix C
∈ RT×F, termed the "damping matrix". The damping matrix
aligns with the spatial shape of the filters and functions by
attenuating the impact of the outermost filter elements on
the output across the frequency dimension. Consequently, in
the resulting network, every convolution operation of the
form On = Wn ∗ Zn-1 + Bn is replaced by On = (Wn ⊕ Cn)
∗ Zn-1 + Bn, where ∗ denotes the convolutional operation



and ⊕ denotes element-wise multiplication. Zn-1 is the
output from the previous layer, Wn denotes the trainable
weight of the filter, and Bn represents the bias. The damping
matrix has a value of 1 at its center and decays linearly to
reach a value of λ. In our submissions, λ equals 0.1.

3. EXPERIMENTS

In this section, we will describe experimental data, setup,
and data augmentation in detail.

3.1. Experimental data

In pre-training ASC model, we conduct our experiments
on the TAU Urban Acoustic Scene 2020 Mobile
development dataset (TAU20) which consists of audio clips
acquired by mobile devices in urban environments. The
dataset includes 230,35 audio clips. Each clip is with a
duration of 10 seconds and a hard label of an acoustic scene.
The dataset contains audio clips from 10 cities and 9 devices:
3 real devices (A, B, C) and 6 simulated devices (S1-S6).
Audio clips recorded by devices B, C, and S1-S6 are
composed of audio segments that are randomly selected
from simultaneous recordings. Hence, all of these audio
clips overlap with the audio clips from device A, but not
necessarily with each other. The total amount of audio clips
in the development dataset is 64 hours. There are 10 classes
of acoustic scenes, including Airport, Metro station, Indoor
shopping mall, Pedestrian street, Public square, Street with
medium level of traffic, Travelling by a tram, Travelling by
a bus, Travelling by an underground metro, and Urban park.
Afterwards, the pre-trained ASC model is further fine-tuned
using the official CAS 2023 dataset.

3.2. Experimental Setups

In pre-training ASC model, audio clips of TAU20 are
split into frames via a Hamming window whose length is
2048 with 1/2 overlapping. Short-time Fourier transform is
then performed on each frame for obtaining linear power
spectrum which is smoothed with a bank of triangular filters
for extracting log Mel-spectrum. In addition, the delta
coefficients of log Mel-spectrum are calculated and
concatenated with the log Mel-spectrum to form the input
audio feature. We train the models for 100 epochs using the
Adam optimizer [10] with batch size to 16. The learning rate
is scheduled to linearly increase from 0 to 0.001 in ten
epochs as a warmup, then decay to 0 with cosine annealing
for the rest of epochs.
During the fine-tuning of the system, we utilize log Mel

spectrogram as input feature, initially resampling all
recordings to 44,100 Hz. We extract the spectrogram using
the short-time Fourier transform with a Hanning window of
40 ms and a hop size of 20 ms. Subsequently, we apply 64
Mel-filter bands to the spectrograms, followed by a
logarithmic operation to obtain the log Mel spectrogram.

Each log Mel spectrogram has a shape of 500 × 64, where
500 represents the number of time frames and 64 denotes
the number of frequency bins. For fine-tuning the baseline,
we employ the Adam optimizer with a learning rate of 0.001
and a batch size of 4.

3.3. Data Augmentation

In pre-training ASC model, to prevent overfitting and
enhance robustness, we employ various data augmentation
methods during training in the time-frequency domain.
These methods included:
• Mix-style: Introduced by Zhou et al. [11], Mix-style is

an approach for manipulating instance-level feature statistics.
It relies on probabilistic mixing of cross-source domain
training samples. The application of Mix-style can be
adjusted using the parameter p. The parameter p controls the
likelihood of its application to a batch of recordings.
Through careful parameter tuning, we achieve better
performance for the model.
• SpecAugment [12]: SpecAugment is a widely used data

augmentation technique in ASC, which encompasses
functional warping, frequency channel masking blocks, and
timestep masking blocks. We implement two masking lines
for each dimension, with a maximum thickness of 2 for each
line.
• Spectrum Modulation: In line with the DCASE 2022

challenge submission, where spectrum modulation is proved
to be effective [13], we adopt the same method. As most of
the provided datasets are recorded using device A, resulting
in an imbalance of data, we address this issue by introducing
a frequency energy difference to the data recorded by
non-device A.

4. RESULTS

The evaluation metric for this competition is the
macro-average accuracy, a commonly utilized metric in
previous ASC challenges. This metric is computed as the
average of class-wise accuracies. We evaluate and compare
the performance of both the improved system and the
baseline system on the development dataset. The results are
given in Table 1.CP-Res system refers to the original
ResNet architecture that did not introduce Damp. 1-acc
refers to the macro-average accuracy of the pre-trained ASC
model fine-tuned using labeled data from the development
dataset of the IEEE ICME 2024 Grand Challenge. 2-acc
refers to the macro-average accuracy of the model further
fine-tuned by us using pseudo-labeled data.

Table 1 Results obtained by baseline and our systems
system 1-acc 2-acc
Basline 0.936 0.956

CP-Res system 0.976 0.965
CP-Res Damp system 0.972 0.973

Figure 1 and Figure 2 respectively show the highest



accuracy for each class in the corresponding validation data
of the submitted system before and after fine-tuning the
model with pseudo-labeled data. Among these ten acoustic
scenes, the traffic street is the most likely to be confused
with other scenes due to the diversity of sounds.

Figure 1: Confusion matrix of the pre-trained ASC model
fine-tuned using labeled data from the development dataset
on validation data.

Figure 2: Confusion matrix of the ASC model further
fine-tuned using pseudo-labeled data on validation data.

5. CONCLUSIONS

In this report, we described a system designed for the
IEEE ICME 2024 grand challenge: semi-supervised acoustic
scene classification under domain shift. The system we
constructed was based on a semi-supervised model with a

pre-trained convolutional neural network. We attempted to
improve the performance of this system by applying data
augmentation. The performance of the submitted system on
the development dataset was improved compared to the
baseline system.
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